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Due to the fundamental importance of ubiquitous protonated
water (the aqueous acids) in chemical and biological systefns,
H*(H,0),, a microscopic model system of protonated water, is
among the most thoroughly explored cluster ions for understanding
the molecular structure of the hydrated protons, proton migration
in liquid water, as well as the transfer of proton through a protein
embedded in membrarféssince it was found by mass spectrom-
etry” The advantage of water clusters is the possibility to obtain
precise structural data of hydrogen-bonded simulations in diverse
environments with various siz&sThis realization has led to the

upsurge in vibrational spectroscopies for studying protonated water 9" o -
psurg P P ying p cubic molecular boxes as hosts containing polyanions (polyhedrons) and

i 9,10 i il

Cluste.rs H(HZQ)”' with n .fror.n 6 to 273" and in laser Spectral _ the protonated water clusters"fH.0),7 (space-filling) near A (002) and
evolution for directly monitoring the proton accommodation motif B (001) faces, respectively. Molecules in a crystal packed-ABABAB
H*(H,0),, with n from 2 to 111 Since the distinction of structural -+ fashion. Acetonitrile molecules and hydrogen atoms were omitted for

variation of larger protonated water clustersX 20) is beyond clarity.

the scope of the vilbrational spectrqscopic preci§idhwe think [PW1,04° is trivalent and a Co-based cubic cavity Co(dpds)

tr|1at crystallogl_raphl_c str:uclturgl StUdf'eS of tkluilarge prc;‘ton Eydra;e divalent, not all the cavities are filled by the anions. X-ray analysis

clusters stal_m |_zed In the lattices of crystal hosts, rather than t eclearly shows that three-quarters of the cavities are occupied by

§pectro§coplc |nvest|g§t|ons, shqulq PTOV'de ”,]UCh more detailed [PW,2040)3~ anions, and the remaining one-fourth are inhabited

mformaltlon cha_ra;:terlzmg t|i1ese mtngt;]lng and |mp%rtant C|USIe'_rS' by water clusters. In one unit cell, two water clusters occupy the
Metal—organic frameworks (MOFs) have emerged as a promis- vertexes and body-centers, and the six [EW]3~ anions are

ing new class of materials that often have crystalline, well-defined positioned at the centers of twelve edges and six faces. Because,

cawgezf;cﬂawels) and can Ee us;sd fortlnlcludltng VZIi.I’IOUS 9uestiy such a crystallization condition, the protonation of the surfaces
Species: ntil-now, ‘a number of neutral water ollgomers, of a Keggin structure [PWO40]~ anion is impossiblé223the water

) . . ) 19 i : on is _
gml;dlng ((j:i_lf:?crett_e rlngsﬂ?n(;j cI:stéfs, h‘;:’ N :ee_n Wﬂltﬁtu:/'gilz clusters thus are protonated to maintain the neutrality of the whole
y A-ray difiraction methods. However, the design ot the S rystal. Twelve acetonitrile molecules dangle around the cluster

that can act as the hosts of the nanometer-sized cage structures qf. .
) ; N ia twelve N--H—O(water) hydrogen bonds (see Supporting
+ :
Hb(Hz?l)“"W'th thydratedlproton core efmltl)eddeccjj |n§>IRﬂ’besl St':'( ._Information Figure S4) and act as pillars between the framework
abig cha T;nge(.) osrfuna_te Y, we succe;;@u Y li)se_ aglobu r;\]r €09IN and the water clusters. It is suggested that the acetonitrile molecules
structure [PW;04¢]>" anion as a templatéto obtain a new three- play an important role in stabilizing the water clusters by linking

dimensional (3D) metatorganic porous framework (see Supporting the water molecules with the heavy “building stones” -
Information Figure S1) in which a proton hydrate clusteH,O),; anions y g [0

was trapped. It is especially interesting to note that the water cluster can be

_Reaction Of COHPWO.0nH-0 W't.h 4,4-bipyridine-N,N'- seen as two parts, a 26 water sheh@bs and a monowater center,
dioxide (dpdo) in acetonitrile/water solution gave compolineCo,- which act as a *host” and a “guest”, respectively (Figure 2). In the

(dpdo)2][H(H20)./CH3CN)12][PW1204q]5 (see Supporting Infor- (H20)26 shell, eight O(2W) centers and twelve O(1W) centers are

m_atlon), .Wh'Ch. yvas a SD. non-lnterwov_en framework (Figure 1) linked together featuring a hexahedral,(),o cluster with each
with cubic cavities occupied by the anions and water clugters. face being an octagonal water ring AB)s (see Supporting

_Each_ colbalt ionl_occupie_s a spe_cial Ipositiohn anclj is bound by six Information Figure S3). Six O(3W) centers, which are disordered
|dent|ca_ dpdo |gan_ds in an ideal octal _edra geometry (see into twelve positions, occupy the six faces of the ,@hbo
Supporting Information Figure S1). Despite the fact that the hexahedron and bond to O(1W) via H-bonds. The chair-like

Cor--Co separations (11.58 A, half of an axial length) in the three hexagonal O(1W}O(2W)—O(1W)—O(2W)—O(1W)-O(3W) ring
directions are equal, the windows of the cubic cavities seem to be is quite similar to those of cubic ide and has been reported as a

rectangular because the N{XP(9)-Co(1) angle is 120 The building block in many forms of ice and relevant liqéftP®It should

i . N
qlameter Of. a Keggln structL_Jre [PM@“O]. anion (abqut 104 A.) be noted that such a special geometry comes from the pentagonal
fits the cubic cavity well, which avoids interpenetration and gives dodecahedra, one of the most stable water clugé&fsf which

a porous structure for compourld Because a template anion each G-+O hydrogen bond [O(1W)-O(1W)] of the pentagonal
t Coordination Chemistry Institute. rings is broken by inserting a disordered water molecule O(3W)
*Institute of Theoretical and Computational Chemistry. and the volume of the water shell is enlarged. As a result, the

Figure 1. Packing diagram of compouridalong thec axis showing the
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Figure 2. Perspective view of the [HH20)2(CHsCN)12] cluster (upper),
showing the molecular ice shell ¢{B),s formed by O(1W) (red), O(2W)
(blue), and O(3W) (green), and the monowater center O(4W) (orange).
Selected @0 separations (A): O(1W)-O(2W) 2.74, O(1W3--O(3W)
2.64, O(3W)--O(4W) 3.57, O(2W3--O(4W) 3.97, N2:-O(1W) 2.81. The
framework of oxygen atoms of the'fH,0).7 cluster and the sketch map
showing the insertion of a water molecule within ar-O hydrogen bond

of the ideal pentagonal dodecahedron shell (bottom).

hexagonal ring, the most common building block inffcand bulk
water?? substitutes the pentagonal ring. Thus, thed}s shell with
On symmetry is of particular interest as it simulates the water

water interactions and the properties of both condensed phase (such

hydrate H(H,0),; was captured and stabilized. The structural
characterization of a large protonated water cluster is significant
because it provides an opportunity to characterize these intriguing
clusters in much greater detail in the future through fine techniques.
The result of the X-ray diffraction study and the calculation both
suggest that the excess proton is positioned in the center; in other
words, the center core of the protonated water cluster is an Eigen
(H30)" model of a hydronium ion.
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